NREL Research Improves Perovskite Stability, Strengthens Silicon Cells

NREL Research Improves Perovskite Stability, Strengthens Silicon Cells

A change in chemical composition has enabled scientists to boost the longevity and efficiency of a perovskite solar cell developed at the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL).

The new formula enabled the solar cell to resist a stability problem that has so far thwarted the commercialization of perovskites. The problem is known as light-induced phase-segregation, which occurs when the alloys that make up the solar cells break down under exposure to continuous light.

“Now that we have shown that we are immune to this short-term, reversible phase-segregation, the next step is to continue to develop stable contact layers and architectures to achieve long-term reliability goals, allowing modules to last in the field for 25 years or more,” says Caleb Boyd.

Perovskite solar cells are typically made using a combination of iodine and bromine, or bromine and chlorine, but the researchers improved upon the formula by including all three types of halides. The research proved the feasibility of alloying the three materials.

Click to Read  By combining iodine, bromine and chlorine, NREL finds stability for perovskite solar cells

Adding chlorine to iodine and bromine created a triple-halide perovskite phase and suppressed the light-induced phase-segregation even at an illumination of 100 suns. What degradation occurred was slight, at less than 4% after 1,000 hours of operation at 60 degrees Celsius. At 85 degrees and after operating for 500 hours, the solar cell lost only about 3% of its initial efficiency.

“The next step is to further demonstrate accelerated stability testing to really prove what might happen in 10 or 20 years in the field,” adds Boyd.

The new formula created a solar cell with an efficiency of 20.3%.

The post NREL Research Improves Perovskite Stability, Strengthens Silicon Cells appeared first on Solar Industry.

3
Like
Save